Instytut Chemii Organicznej Polskiej Akademii Nauk

AUTOREFERAT

Projektowanie molekularne, synteza oraz właściwości fotofizyczne *N,O*-koordynowanych kompleksów boru zawierających 1,3-tiazol

Mykhaylo Potopnyk

Załącznik do wniosku o wszczęcie postępowania habilitacyjnego

1. DANE OSOBOWE

Mykhaylo Potopnyk

Instytut Chemii Organicznej

Polska Akademia Nauk

Kasprzaka 44/52

01-224, Warszawa

Tel.: (22) 343 20 24; Faks: (22) 343 66 81

e-mail: <u>mykhaylo.potopnyk@icho.edu.pl;</u> potopnyk@gmail.com.

Wykształcenie:

11/2008-6/2013	Doktor nauk chemicznych Instytut Chemii Organicznej PAN, Warsawa, Polska Praca doktorska: " <i>Macrocyclic nitrogen-containing receptors with</i> <i>sucrose unit: synthesis and complexing properties</i> " Promotor: Prof. Sławomir Jarosz
9/2007–6/2008	Magister chemii <u>z wyróżnieniem</u> Uniwersytet Lwowski im. Ivana Franki, Lwów, Ukraina Praca magisterska: "Functionalized 1-arylpyrazoles based on diazonium salts as reagents for molecular design of pyrazole containing heterocyclic compounds" Promotor: Prof. Vasyl Matiychuk
9/2003-6/2007	Licencjat chemii <u>z wyróżnieniem</u> Uniwersytet Lwowski im. Ivana Franki, Lwów, Ukraina

Doświadczenie zawodowe:

5/2017–present	Adiunkt Instytut Chemii Organicznej PAN, Warsawa, Polska
2/2016-4/2017	Asystent Instytut Chemii Organicznej PAN, Warsawa, Polska
1/2015-1/2016	Staż podoktorski Instytut Nauk Molekularnych/Uniwersytet Bordeaux, Francja
10/2013-12/2014	Staż podoktorski, Chemik medyczny Uniwersytet Michagan, USA
2/2010-10/2013	Asystent Instytut Chemii Organicznej PAN, Warszawa, Polska

Krótkoterminowy pobyt naukowy:

11/2019–1/20203-miesięczny staż naukowy
Uniwersytet Technologiczny w Kownie, Litwa

2. OPIS OSIĄGNIĘCIA NAUKOWEGO STANOWIĄCEGO PODSTAWĘ WNIOSKU HABILITACYJNEGO

2.1. Tytuł osiągnięcia naukowego

Projektowanie molekularne, synteza oraz właściwości fotofizyczne *N,O*-koordynowanych kompleksów boru zawierających 1,3-tiazol

2.2. Wykaz publikacji potwierdzających osiągnięcie naukowe

M. A. Potopnyk,* R. Lytvyn, Y. Danyliv, M. Ceborska, O. Bezvikonnyi, D. Volyniuk, J. V. Gražulevičius "*N*,*O* π-Conjugated 4-Substituted 1,3-Thiazole BF₂ Complexes: Synthesis and Photophysical Properties" *J. Org. Chem.* 2018, 83, 1095–1105. (IF₂₀₁₈ = 4.745)

Mój wkład w powstanie tej publikacji polegał na stworzeniu koncepcji badań, określeniu ich celu naukowego oraz zaplanowaniu badań. Opracowałem i zoptymalizowałem wszystkie poszczególne etapy syntezy. Oczyściłem powstałe związki pośrednie i końcowe metodami chromatograficznymi lub rekrystalizacji. Wyznaczyłem i potwierdziłem struktury związków pośrednich i końcowych metodami spektroskopii NMR i IR oraz spektrometrii mas. Przeprowadziłem obliczenia DFT oraz TD-DFT. Zbadałem właściwości absorpcyjne kompleksów borowych. Zebrałem i opracowałem wyniki wszystkich badań eksperymentalnych. Napisałem cały tekst publikacji wraz z materiałami pomocniczymi ("Supporting Information") i zredagowałem go we współpracy z innymi autorami. Prowadziłem korespondencję z edytorem i przygotowałem odpowiedzi dla recenzentów. Mój udział procentowy szacuję na 65%.

2. M. A. Potopnyk,* D. Volyniuk, M. Ceborska, P. Cmoch, I. Hladka, Y. Danyliv, J. V. Gražulevičius "Benzo[4,5]thiazolo[3,2-*c*][1,3,5,2]oxadiazaborinines: Synthesis, Structural, and Photophysical Properties" *J. Org. Chem.* 2018, *83*, 12129–12142. (IF₂₀₁₈ = 4.745)

Mój wkład w powstanie tej publikacji polegał na stworzeniu koncepcji badań, określeniu ich celu naukowego oraz zaplanowaniu badań. Opracowałem i zoptymalizowałem wszystkie poszczególne etapy syntezy. Oczyściłem powstałe związki pośrednie i końcowe metodami chromatograficznymi lub rekrystalizacji. Wyznaczyłem i potwierdziłem struktury związków pośrednich i końcowych metodami spektroskopii NMR i IR oraz spektrometrii mas. Przeprowadziłem obliczenia DFT oraz TD-DFT. Zbadałem właściwości absorpcyjne kompleksów borowych. Zebrałem i opracowałem wyniki wszystkich badań eksperymentalnych. Napisałem cały tekst publikacji wraz z materiałami pomocniczymi ("Supporting Information") i zredagowałem go we współpracy z innymi autorami. Prowadziłem korespondencję z edutorem i przygotowałem odpowiedzi dla recenzentów. Mój udział procentowy szacuję na 65%.

3. **M. A. Potopnyk**,* D. Volyniuk, R. Luboradzki, M. Ceborska, I. Hladka, Y. Danyliv, J. V. Gražulevičius* "Application of the Suzuki–Miyaura Reaction for the Postfunctionaliza-tion of the Benzo[4,5]thiazolo[3,2-*c*][1,3,5,2]oxadiazaborinine Core: An Approach toward Fluorescent Dyes" *J. Org. Chem.* **2019**, *84*, 5614–5626. (IF₂₀₁₉ = 4.335)

Mój wkład w powstanie tej publikacji polegał na stworzeniu koncepcji badań, określeniu ich celu naukowego oraz zaplanowaniu badań. Opracowałem i

zoptymalizowałem wszystkie poszczególne etapy syntezy. Oczyściłem powstałe związki pośrednie i związki końcowe metodami chromatograficznymi lub rekrystalizacji. Wyznaczyłem i potwierdziłem struktury związków pośrednich i końcowych metodami spektroskopii NMR i IR oraz spektrometrii mas. Przeprowadziłem obliczenia DFT oraz TD-DFT. Zbadałem właściwości absorpcyjne kompleksów borowych. Zebrałem i opracowałem wyniki wszystkich badań eksperymentalnych. Napisałem cały tekst publikacji wraz z materiałami pomocniczymi ("Supporting Information") i zredagowałem go we współpracy z innymi autorami. Prowadziłem korespondencję z edytorem oraz przygotowałem odpowiedzi dla recenzentów. Mój udział procentowy szacuję na 65%.

4. M. A. Potopnyk,* D. Volyniuk, R. Luboradzki, M. Ceborska, I. Hladka, Y. Danyliv, J. V. Grazulevicius "Organolithium-Mediated Postfunctionalization of Thiazolo[3,2-c][1,3,5,2]oxadiazaborinine Fluorescent Dyes" *J. Org. Chem.* 2020, *85*, 6060–6072. (IF₂₀₁₉ = 4.335)

Mój wkład w powstanie tej publikacji polegał na stworzeniu koncepcji badań, określeniu ich celu naukowego oraz zaplanowaniu badań. Opracowałem i zoptymalizowałem wszystkie poszczególne etapy syntezy. Oczyściłem powstałe związki pośrednie i końcowe metodami chromatograficznymi lub rekrystalizacji. Wyznaczyłem i potwierdziłem struktury związków pośrednich i końcowych metodami spektroskopii NMR oraz spektrometrii mas. Przeprowadziłem obliczenia DFT oraz TD-DFT. Zbadałem właściwości absorpcyjne kompleksów borowych. Zebrałem i opracowałem wyniki wszystkich badań eksperymentalnych. Napisałem cały tekst publikacji wraz z materiałami pomocniczymi ("Supporting Information") i zredagowałem go we współpracy z innymi autorami. Prowadziłem korespondencję z edytorem oraz przygotowałem odpowiedzi dla recenzentów. Mój udział procentowy szacuję na 65%.

 M. A. Potopnyk,* M. Kravets, R. Luboradzki, D. Volyniuk, V. Sashuk, J. V. Grazulevicius* "Carbazole-modified thiazolo[3,2-c][1,3,5,2]oxadiazaborinines exhibiting aggregationinduced emission and mechanofluorochromism" *Org. Biomol. Chem.* 2021, *19*, 406-415 (DOI: 10.1039/D0OB02225J) (IF₂₀₁₉ = 3.412).

Mój wkład w powstanie tej publikacji polegał na stworzeniu koncepcji badań, określeniu ich celu naukowego oraz zaplanowaniu badań. Opracowałem i zoptymalizowałem wszystkie poszczególne etapy syntezy. Oczyściłem powstałe związki pośrednie i końcowe metodą chromatografii kolumnowej. Wyznaczyłem i potwierdziłem struktury związków pośrednich i końcowych metodami spektroskopii NMR oraz spektrometrii mas. Przeprowadziłem obliczenia DFT oraz TD-DFT. Zbadałem właściwości termiczne, absorpcyjne oraz emisijne końcowych kompleksów borowych. Zebrałem i opracowałem wyniki wszystkich badań eksperymentalnych. Napisałem cały tekst publikacji wraz z materiałami pomocniczymi ("Supporting Information") i zredagowałem go we współpracy z innymi autorami. Prowadziłem korespondencję z edytorem oraz przygotowałem odpowiedzi dla recenzentów. Mój udział procentowy szacuję na 80%. 6. M. A. Potopnyk* "1,3,5,2-Oxadiazaborinines as a class of fluorescent organoboron dyes" *Targets in Heterocyclic Systems*, **2020**, *24*, 398–418.

Mój wkład w powstanie tej publikacji polegał na dogłębnej analizie danych literaturowych, napisaniu publikacji oraz dyskusji z redaktorem. Mój wkład szacuję na 100%.

2.3. Omówienie osiągnięcia naukowego

Tetrakoordynacyjne kompleksy organoboronowe należą do jednej z najważniejszych i najszerzej stosowanych klas barwników fluorescencyjnych.¹ Ze względu na swoje cenne właściwości fotofizyczne (takie jak silne pasma absorpcji w regionach UV-VIS-NIR, wysokie wydajności kwantowe fluorescencji, fotostabilność, dobrą rozpuszczalność w powszechnie stosowanych rozpuszczalnikach organicznych itp.)² związki te znajdują zastosowanie w wielu dziedzinach, takich jak sondy fluorescencyjne,³⁻¹⁵ fotouczulacze w terapii fotodynamicznej,¹⁶⁻ fotoaktywne elementy w organicznych ogniwach słonecznych²⁰⁻²⁴ i układach supramolekularnych,²⁵⁻³¹ emitery w urządzeniach optoelektronicznych,^{32,33} itp. Obecnie najbardziej reprezentatywnymi barwnikami organoboronowymi są pochodne borodipirrometenowe (BODIPYs, Rysunek 1).^{3,34} Jednakże, pomimo intensywnej fluorescencji barwników BODIPY w roztworze, ich emisja w stanie stałym jest zwykle słaba, co silnie ogranicza zastosowania optoelektroniczne.¹ Ta słaba emisia jest głównie spowodowana samoabsorpcja wynikającą z bardzo wąskich przesunięć Stokesa powodujących silne nakładanie się widm absorpcji i emisji barwnika. Aby rozwiązać ten problem, modyfikacja rdzenia BODIPY była przedmiotem dużego zainteresowania badawczego w ostatnich latach. Dlatego też opracowano kompleksy organoboronowe, zawierające inne niż pirolowe jednostki heterocykliczne przyłączone do pierścienia 1,3,2-diazaboryniny **II**,³⁵⁻³⁷ a także 1,2-azaboryniny I,³⁸ i 1,3,5,2-triazaboryniny III³⁹⁻⁴⁴ (rysunek 1). Inna klase kompleksów organoboronowych o pierścieniu sześcioczłonowym zsyntetyzowano z ligandów O,O-chelatujących, tworząc pochodne 1,3,2-dioksaboryniny IV.45-49 Jednocześnie,

desymetryzacja struktury molekularnej jest korzystna dla zwiększenia wartości przesunięcia Stokesa. W kontekście tym bardzo atrakcyjnie prezentują się kompleksy organoboronowe,

Rysunek 1. Sześcioczłonowe kompleksy organoboronowe.

posiadające jednocześnie azotowe i tlenowe centra koordynacyjne. Do tej pory, pomimo dużego postępu w badaniach nad barwnikami organoboronowymi opartymi na rdzeniu 1,3,2-oksazaboryniny V,⁵⁰⁻⁶² rozwój 1,3,5,2-oksadiazaborynin **VI** jest wciąż słabo zaawansowany. Większość z nich oparta jest na ligandach zawierających ubogie w elektrony azotowe układy heterocykliczne: sześcioczłonowe (pirydyna,⁶³⁻⁶⁶ pirazyna,⁶⁶⁻⁶⁸ pirydazyna,⁶⁶ pirymidyna,⁶⁹

naftyrydyna⁷⁰⁻⁷⁵) lub pięcioczłonowe (tiadiazol⁷⁶) wykazujące niską lub słabą wydajność kwantową fluorescencji.

W mojej pracy, która jest podstawą tego wniosku, skupiłem się na opracowaniu nowej klasy stabilnych chemicznie wysokoemisyjnych barwników organoboronowych o wysokiej wartości wydajności kwantowej fluorescencji, zwłaszcza w stanie stałym. Aby zrealizować ten cel, zdecydowałem się na zaprojektowanie pochodnych 1,3,5,2-oksadiazaboryniny połączonych z elektronodonorową jednostką tiazolową. Pierwsza synteza tiazolowej pochodnej oksadiazaboryniny obejmowała tylko dwa proste etapy. W pierwszym etapie, w reakcji acylowania chlorkiem (*para*-dimetyloamino)benzoilu (1) 4-podstawionych 2-aminotiazoli (**2a-g**) w środowisku zasadowym otrzymałem amidy **3a-g** z wydajnością dobrą lub umiarkowaną (46-80%). W drugim etapie, związki **3a-g** przekształciłem w kompleksy borowe **4a-g** poprzez traktowanie eteratem trifluorku boru (BF₃·OEt₂) w obecności silnej zasady (*N*,*N*-diizopropyloetyloaminy, DIPEA) z wydajnością 48-77%. Tak otrzymane kompleksy organoboronowe posiadają różne podstawniki w pozycji 4 pierścienia 1,3-tiazolowego, w tym grupy donorowe (barwnik **4e**) i akceptorowe (barwniki **4f,g**) (Schemat 1).

Schemat 1. Synteza tiazolo[3,2-c][1,3,5,2]oksadiazaborynin 4a-g.

Barwniki **4a-g** wykazywały charakterystyczne piki absorpcyjne z maksimum absorpcji (λ_{abs}) przy długości fali 402-415 nm i molowym współczynnikiem absorpcji (ϵ) wynoszącym 4,73-6,01 · 10⁴ M⁻¹·cm⁻¹ (Tabela 1). Widma absorpcyjne nie wykazywały prawie żadnych zmian przy zmianie polarności rozpuszczalnika. Widma emisyjne rozcieńczonych roztworów

toluenowych barwników **4a-d,f-g** wykazywały jedno pasmo z maksimum (λ_{em}) przy 437-448 nm. To z kolei prowadziło do przesunięcia Stokesa (Δv) w zakresie od 1647 cm⁻¹ (dla związku **4b**) do 1927 cm⁻¹ (dla analogu **4d**). Z kolei, odpowiednie widmo emisyjne kompleksu **4e** charakteryzuje się przesunięciem batochromowym (λ_{em} =518 nm), co spowodowało znaczny wzrost wartości przesunięcia Stokesa (Δv =5386 cm⁻¹). Barwniki **4a-d** wykazywały bardzo wysokie wartości wydajności kwantowej fluorescencji w rozcieńczonych roztworach toluenu (Φ =0,94-0,99). Natomiast przyłączenie grupy donorowej (*p*-dimetyloaminofenylowej w barwniku **4e**) lub akceptorowej (*p*-cyjanofenylowej w analogu **4f**) spowodowało spadek wydajności fluorescencyjnej (odpowiednio Φ =0,66 i 0,62). Ponadto, związek **4g** zawierający podstawnik silnie akceptorowy (*p*-nitrofenylowy) wykazywał bardzo wysokie wygaszanie fluorescencji (Φ =0,02 w toluenie, Tabela 1).

Związek	λ_{abs} , nm	ϵ , M ⁻¹ cm ⁻¹	λ_{em} , nm	$\Delta v, cm^{-1}$	Φ
4 a	405	56600	439	1912	>0.99
4 b	407	59300	437	1687	>0.99
4 c	406	63100	439	1851	0.94
4d	409	56600	444	1927	0.94
4 e	405	47300	518	5386	0.66
4 f	414	59900	448	1833	0.62
4g	415	62900	447	1725	0.02
5 a	416	62000	449	1767	0.83
5b	416	58300	449	1767	0.77
5c	418	57500	451	1750	0.21
5d	406	57900	437	1747	0.83
5e	425	36300	464	1978	0.79
5f	430	32700	470	1979	0.66
5g	437	43100	481	2093	0.79
5h	407	59700	440	1843	0.85
5i	420	62500	457	1927	0.84
5j	429	68700	471	2079	0.83
5k	417	76100	454	1954	0.70
51	406	56100	438	1799	0.84
5m	395	58000	439	2537	0.79
5n	407	48000	439	1791	0.82
50	419	51200	449	1595	0.76
5p	419	59300	449	1595	0.79
5q	420	68500	457	1928	0.80
5r	424	63700	458	1751	0.82
5 s	409	51700	441	1774	0.84
5t	418	62500	447	1552	0.63
5 u	421	64200	462	2108	0.70
5v	423	87500	458	1807	0.85

Tabela 1. Właściwości fotofizyczne związków 4a-g oraz 5a-v w toluenie.

Nieoczekiwanie, w stanie stałym barwnik **4a** wykazywał bardzo wysoką emisję ($\Phi_{solid}=0,94$). Zjawisko to było spowodowane słabo zorganizowanym upakowaniem molekularnym, co potwierdziła analiza rentgenostrukturalna. Badanie właściwości fluorescencyjnych związku **4a** w mieszaninach THF-woda o różnych stosunkach wagowych wykazało, że związek ten wykazuje aktywność emisji indukowanej agregacją (*ang.*: exhibits aggregation induced emission, AIE). Z drugiej strony, ze względu na dobrze zorganizowane upakowanie molekularne podstawionych pochodnych **4b-f**, ich emisja w stanie stałym jest znacznie niższa ($\Phi_{solid}=0.07-0.25$).

W celu otrzymania pochodnych tiazolo[3,2-*c*][1,3,5,2]oksadiazaboryniny z podstawnikiem w pozycji 5 pierścienia 1,3-tiazolowego, opracowałem metodę postfunkcjonalizacji C-H bez udziału metali przejściowych, opartą na bezpośrednim litowaniu związków 4 (Schemat 2, Tabela 2).

Schemat 2. Postfunkcjonalizacja tiazolo[3,2-*c*][1,3,5,2]oksadiazaborynin.

Substytucja elektrofilowa 1,3-tiazolu w obecności zwiazku litoorganicznego zależy od kwasowości atomów wodoru tiazolu (H-2>H-5>H-4).77 Zgodnie z ta reguła, substytucja elektrofilowa 4,5-niepodstawionych pochodnych 1,3-tiazolu zachodzi najlepiej w pozycji 5 pierścienia tiazolowego. Jednakże, podstawienie w pozycji 4 może być możliwe w obecności nadmiaru odczynnika organolitowego dla reakcji halogenowania, spowodowanej "tańcem halogenów".78-81 Majac to na uwadze, zbadałem indukowaną związkiem litoorganicznym elektrofilową postfunkcjonalizację kompleksu 4a, który posiada 4,5-niepodstawioną jednostką 1,3-tiazolowa. Diizopropyloamidek litu (LDA) został wybrany jako efektywny mediator modyfikacji pierścienia tiazolowego. Warto zauważyć, że N.O-koordynowane kompleksy organoboronowe wykazują niską stabilność w środowisku zasadowym.⁸² Na szczęście tiazolo[3,2-c][1,3,5,2]oksadiazaboryniny wykazały wysoką stabilność chemiczną w warunkach reakcji podstawienia elektrofilowego z udziałem LDA (Schemat 2). W pierwszej kolejności przetestowałem elektrofilowe odczynniki halogenujące (tetrachlorek węgla, tetrabromek węgla, brom oraz jod; Tabela 2, No 1-4). Regioselektywne monohalogenowanie w pozycji 5 pierścienia tiazolowego zrealizowano z najwyższą wydajnością (60-67%) dla produktów 5a-c, gdy stosunek molowy substratu tiazolowego/LDA/elektrofilu wynosił 1,00:1,05:1,05 (Schemat 2).

Następnie, opracowane warunki reakcji zastosowałem do kilku C-elektrofili. Do pomyślnego przeprowadzenia reakcji metylowania konieczne było jednak dodanie dodatkowego odczynnika kompleksującego kationy litu (heksametylofosforoamid, HMPA); związek 5d wyizolowano z wydajnością 71% (Tabela 2, pozycja 5). Ester 5e i aldehyd 5g otrzymano z wydajnością 76% w obu przypadkach, stosując odpowiednio chloromrówczan metylu i dimetyloformamid (DMF) jako elektrofile (Tabela 2, pozycji 6 i 9). Co zaskakujące, zastosowanie bromocyjanu jako czynnika elektrofilowego doprowadziło do otrzymania chlorowco podstawionego produktu 5b (pozycja 7 w Tabeli 2). W celu otrzymania cyjanopochodnej 5f, jako efektywny elektrofilowy odczynnik cyjanowania zastosowałem

benzotriazolo-karbonitryl (**Bt-CN**, ⁸³ Schemat 2). Produkt **5f** został wyizolowany z wydajnością 70% (Tabela 2, pozycja 8). Ponadto, stosując tę metodologię do reakcji związku **4a** z Si-, S-, **Tabela 2.** Zakres elektrofilowej postfunkcjonalizacji kompleksów organoboronowych **4a,b,d**

No	R	Electrophile	Е	Produkt	Wydajność, %
1	Н	CCl ₄	Cl	5a	67
2	Н	CBr ₄	Br	5b	64
3	Н	Br ₂	Br	5b	60
4	Н	I ₂	Ι	5c	60
5	Н	MeI ^a	Me	5d	71
6	Н	ClCO ₂ Me	CO ₂ Me	5e	76
7	Η	Br-CN	Br	5b	71
8	Η	Bt-CN ^a	CN	5 f	70
9	Н	DMF	СНО	5g	76
10	Н	Me ₃ SiCl	SiMe ₃	5h	85
11	Η	$(PhS)_2$	SPh	5i	73
12	Н	PhSO ₂ Cl	Cl	5a	65
13	Н	Bt-SO ₂ Ph ^a	SO ₂ Ph	5j	80
14	Н	(PhSe) ₂	SePh	5k	73
15	Η	Bu ₃ SnCl	SnBu ₃	51	64
16	Me	MeI ^a	Me	5m	80
17	Me	Me ₃ SiCl	SiMe ₃	5n	88
18	Me	CCl_4	Cl	50	86
19	Me	CBr ₄	Br	5p	85
20	Me	$(PhS)_2$	SPh	5q	82
21	Me	ClCO ₂ Et	CO ₂ Et	5r	67
22	Ph	Me ₃ SiCl	SiMe ₃	5 s	88
23	Ph	CBr ₄	Br	5t	81
24	Ph	$(PhS)_2$	SPh	5u	68
25	Ph	ClCO ₂ Et	CO ₂ Et	5v	72

z udziałem LDA.

^{*a*}Z dodatkiem HMPA.

Se- i Sn-elektrofilami, zsyntetyzowałem barwniki organoboronowe **5h-l** z dobrymi wydajnościami (64-85%, Tabela 2, pozycje 10, 11, i 13-15). Warto zauważyć, że podobnie jak w przypadku reakcji cyjanowania, sulfonowanie nie zachodziło z udziałem elektrofilowego chlorowca (chlorek fenylosulfonylowy, pozycja 12 w Tabeli 2); otrzymałem wówczas chloropochodną **5a** z wydajnością 65%. Natomiast do syntezy kompleksu **5j** z grupą sulfonową (pozycja 13 w Tabeli 2) jako elektrofil zastosowałem fenylosulfonylo-benzotriazol (**Bt-SO2Ph**,⁸⁴ Schemat 2).

Mając opracowane warunki wydajnej, prowadzonej z udziałem związku litoorganicznego, elektrofilowej postfunkcjonalizacji związku **4a**, rozszerzyłem tę reakcję na kompleksy **4b,d**. Zastosowanie odczynników metylujących, sililujących, halogenujących, sulfenylujących i etoksykarboksylujących pozwoliło na otrzymanie barwników **5m-v** z 4,5-dipodstawioną jednostką tiazolową z bardzo dobrymi wydajnościami (67-88%, Tabela 2, pozycje 16-25). Podsumowując zastosowanie reakcji pochodnych tiazolo[3,2-c][1,3,5,2]oksadiazaboryniny **4** z odczynnikami elektrofilowymi z udziałem LDA pozwala na cenną, regioselektywną C–H modyfikację tych fluoroforów organoboronowych z udziałem różnych grup, w tym C-, Hal-, Si-, S-, Se- i Sn-podstawników. W rezultacie zsyntetyzowano bibliotekę nowych 1,3-tiazolowych kompleksów organoboronowych **5a-v** (Schemat 2) z dobrymi wydajnościami (60-88%, Tabela 2).

Tak otrzymane tiazolo[3,2-*c*][1,3,5,2]oksadiazaboryniny **5a-v** wykazywały na ogół silne pasmo absorpcji oraz intensywną pojedynczą emisję. W roztworach toluenowych, długości fal maksimów absorpcji i emisji zależały od siły donorowo-akceptorowej podstawnika E. Maksima te ulegały przesunięciu batochromowemu wraz ze wzrostem siły akceptorowej. W związku z tym, w porównaniu z maksimami absorpcji i emisji kompleksów **4a,b,d** (λ_{abs} =405-409 nm i λ_{em} =437-444 nm), analogiczne parametry związków **5a-c,o,p,t** z podstawnikami halogenowymi przy pierścieniu tiazolowym wykazywały nieznacznie zwiększone długości fali maksimów absorpcji i emisji (λ_{abs} =416-421 nm; λ_{em} =447-451 nm). Znacznie silniejsze przesunięcia batochromowe zaobserwowano w przypadku związków z elektronoakceptorową grupą estrową (**5e,r,v**, λ_{abs} =423-425 nm; λ_{em} =458-464 nm), nitrylową (**5f**, λ_{abs} =430 nm i λ_{em} =470 nm), aldehydową (**5g**, λ_{abs} =437 nm i λ_{em} =481 nm) oraz sulfonową (**5j**, λ_{abs} =429 nm i λ_{em} =471 nm). Zależność ta spowodowała również wzrost przesunięć Stokesa z 1747 cm⁻¹ dla barwnika **5d** do 2093 cm⁻¹ dla aldehydu **5g**.

Należy podkreślić, że podstawniki E (w pozycji 5 pierścienia tiazolowego, Schemat 2) mają zdecydowanie większy wpływ na wartość maksimów absorpcji i emisji tiazolo[3,2c][1,3,5,2]oksadiazaborynin w porównaniu z podstawnikami R (w pozycji 4).

Barwniki **5a-v** charakteryzowały się głównie wysoką wydajnością kwantową fluorescencji w rozpuszczalnikach niepolarnych (Φ =0,63-0,85 w toluenie), natomiast jodopochodna **5c** - ze względu na "efekt ciężkiego atomu" - wykazywała znaczny spadek wydajności fluorescencji (Φ =0,21 w toluenie, Tabela 1). W ciele stałym wykazywały one jednak stosunkowo słabe wydajności kwantowe fluorescencji (do 0,20), o których najwyraźniej decyduje wygaszanie wywołane agregacją (*ang.*: aggregation-caused quenching, ACQ), generowane przez oddziaływania π - π/π -n pomiędzy równolegle zorientowanymi cząsteczkami kompleksu. Wyjątek stanowi kompleks organoboronowy **5l**, który wykazuje zwiększoną wydajność kwantową fluorescencji w stanie stałym (Φ_{solid} =0,44). Zjawisko to było spowodowane obecnością dużego lipofilowego podstawnika SnBu₃, który zredukował międzycząsteczkowe oddziaływanie π - π w ciele stałym i ograniczył efekt ACQ.

Kontynuując swoje badania, zbadałem wpływ annulacji jednostki aromatycznej do pierścienia 1,3-tiazolowego na właściwości fotofizyczne tego typu kompleksów. W tym celu zaprojektowałem *N,O*-chelatowane BF₂ kompleksy, wykorzystując benzo[*d*]tiazol jako heterocykliczne centrum *N*-koordynacyjne. Modyfikacja pozycji 6 w cząsteczce benzo[*d*]tiazolu została tak dobrana, aby zapewnić najlepsze sprzężenie pomiędzy centrum *N*-koordynacyjnym liganda (następującym po jednostce borowej) a podstawnikami R. Niepodstawiona benzo[*d*]tiazol-2-amina **6a** jest handlowo dostępna. Natomiast benzo[*d*]tiazol-2-aminy **6b-e** z podstawnikiem R (OMe, F, Cl, CF₃) w pozycji 6 układu benzotiazolowego zsyntetyzowałem z wydajnością 71-91% metodą *one-pot*, rozpoczynając od 4-podstawionych anilin **7b-e** i układu Br₂/NH₄SCN w kwasie octowym.^{85,86} Z drugiej strony, aby otrzymać 6-bromobenzo[*d*]tiazol-2-aminę **6f**, niepodstawiony analog **6a** został selektywnie bromowany w środowisku lodowatego kwasu octowego w pozycji 6 benzotiazolu z bardzo dobrą (91%) wydajnością (Schemat 3). Następnie, dwuetapową metodę, polegającą na reakcji acylowania

amin **6a-f** z chlorkiem **1**, po której następowało kompleksowanie amidów **8a-f** trifluorkiem boru, zastosowałem do syntezy benzo[4,5]tiazolo[3,2-c][1,3,5,2]oksadiazaboryn **9a-f** (Schemat 3).

Schemat 3. Synteza kompleksów organoboronowych 9a-f.

Tak otrzymane związki **9a-f** miały różne podstawniki w pozycji 6 jednostki benzotiazolowej, w tym grupy donorowe (OMe), słabe akceptorowe (F, Cl, Br) i silnie akceptorowe (CF₃). W celu porównania właściwości fotofizycznych tych barwników z właściwościami analogu zmodyfikowanego znacznie silniejszą grupą akceptorową w cząsteczce benzotiazolowej, zaprojektowałem kompleks borowy oparty na perfluorowanym syntonie benzotiazolowym. Aby osiągnąć ten cel, opracowałem ścieżkę syntezy (Schemat 4) rozpoczynając od pentafluoroaniliny (**10**). Amina **10** została przekształcona w 1-(perfluorofenylo)tiomocznik (**11**) z wydajnością 75% poprzez traktowanie izotiocyjanianem benzoilu, a następnie hydrolizę z użyciem NaOH. Następnie, w reakcji tiomocznika **11** z silną zasadą (NaH) w suchym DMF, w wyniku eliminacji kwasu fluorowodorowego i cyklizacji benzotiazolu otrzymano 4,5,6,7-tetrafluorobenzo[d]tiazol-2-aminę (**12**) z bardzo dobrą wydajnością (83%). Stosując wcześniej opracowaną metodykę, aminę **12** przekształcono w amid **13** z wydajnością 68%.

Annulacja pierścienia benzenowego **9a-f** i (zwiazki 14) spowodowała batochromowe przesunięcie pasm absorpcji (λ_{abs}=421-431 nm) i emisji (λ_{em}=450-464 nm) w toluenie (Tabela 3) oraz wzrost molowego współczynnika absorpcji (ε=6,26- $8,84 \cdot 10^4$ M⁻¹·cm⁻¹) w porównaniu Z odpo-

Schemat 4. Synteza kompleksu organoboronowego 14.

wiednimi parametrami fotofizycznymi nieskondensowanej pochodnej tiazolowej 4a (λ_{abs} =405 nm, λ_{em} =439 nm, ϵ =5,66·10⁴ M⁻¹·cm⁻¹). Kompleksy **9a-f** wykazywały również wysoką wydajność fluorescencji (Φ =0,74-0,93) w toluenie.

toluenowy roztwór	Tabela 3. Właściwości absorpcyjne i emisyjne organoboronowych					
kompleksu 14 wyka- kompleksów 9a-f, 14 i 15a-f w toluenie.				enie.		
zywał nieco mniej	Związek	λ_{abs} , nm	ε, M ⁻¹ cm ⁻¹	λ_{em} , nm	$\Delta v, \mathrm{cm}^{-1}$	Φ
wydajną emisję	9a	421	62600	450	1531	0.84
(Φ =0,65). Z kolei w	9b	411/427	82500/88400	454	1392	0.88
ciele stałym, ze	9c	423	71700	452	1516	0.85
względu na silny	9d	427	73200	456	1489	0.91
efekt ACQ, wartości	9e	428	86000	460	1625	0.93
kwantowej wydaj-	9f	427	66700	450	1197	0.74
ności fluorescencji	14	431	84900	464	1650	0.65
kompleksów 9a-f	15a	430	78100	457	1373	0.92
były niskie	15b	431	69500	459	1415	0.80
$(\Phi_{\text{solid}}=0,02-0,06),$	15c	434	89000	459	1255	0.99
podczas gdy barwnik	15d	431	70900	459	1415	0.95
14 wykazywał emisję	15e	430	64800	523	4135	0.78
o podwyzszonej	15f	436	73600	462	1291	0.84
kwantowej wydaj-	L					

Natomiast

ności fluorescencji ($\Phi_{\text{solid}}=0,34$).

Związek 9f z podstawnikiem bromowym przy jednostce benzotiazolowej (R=Br) zbadałem w reakcji Suzuki-Miyaura z kwasami (het)aryloboronowymi. Jako efektywny katalizator zastosowałem PdCl₂(PPh₃)₂. Zoptymalizowana procedura (przy stosunku molowym 1,00:1,50:0,05 bromo substratu/kwasu aryloboronowego/Pd katalizatora) pozwoliła na otrzymanie produktów 15a-f z bardzo wysokimi wydajnościami (89-95%, Schemat 5).

Tak zsyntetyzowane kompleksy **15a-f** posiadały różne podstawniki aromatyczne w pozycji 6 jednostki benzo[d]tiazolowej, w tym grupy elektronoakceptorowe (ptrifluorometylofenyl i p-cyjanofenyl) oraz elektronodonorowe (p-dimetyloaminofenyl, pmetoksyfenyl i 2-tienyl).

Maksima długości fali absorpcji kompleksów 15a-f w roztworze toluenu zawierały się w przedziale 430-436 nm i charakteryzowały się wysokimi molowymi współczynnikami absorpcji (ϵ =6,48-8,90·10⁴ M⁻¹·cm⁻¹). Odpowiednie maksima długości fali emisji dla barwników 15a-d,f znajdowały się w zakresie 457-462 nm. Znamienne jest, że duże przesunięcie batochromowe zaobserwowano w widmie emisyjnym związków 15e (Ar=4-C₆H₄NMe₂, λ_{em} =523 nm). Roztwory toluenowe barwników 15a-f wykazywały wysokie wydajności kwantowe fluorescencji (Φ=0,78-0,99). Natomiast w stanie stałym związki te wykazywały słabą fluorescencję (Φ_{solid} do 0,17), z wyjątkiem kompleksu **15c** (Φ_{solid} =0,31).

Po uzyskaniu informacji na temat związku pomiędzy jednostką (benzo)tiazolową a barwników właściwościami elektronowymi optycznymi (benzo)tiazolo[3,2i c][1,3,5,2]oksadiazaboryninowych wykazalem, że zastąpienie grupy Me₂N grupą karbazolową (barwniki 16a,b, Rysunek 2) spowodowało wyraźne zwiększenie solwatofluorochromizmu, a także - ze względu na ograniczenie rotacji wewnątrzcząsteczkowej - zwiększenie aktywności AIE. Zaskakująco, przyłączenie dwóch grup tert-butylowych do jednostki karbazolowej (barwnik 16b) stymulowało znaczne właściwości mechanofluorochromowe.

Schemat 5. Reakcja Suzuki-Miyaura bromopochodnej **9f** z kwasami arylo(tienylo)boronowymi.

Rysunek 2. Tiazolo[3,2-*c*][1,3,5,2]oksadiazaborininy **4a** i **16a,b**.

Kompleksy 16a,b z łatwością otrzymałem w czterech etapach (Schemat 6), potwierdzając skuteczną wygodna strategie otrzymywania barwników tiazolo[3,2i c][1,3,5,2]oksadiazaboryninowych z rozbudowanymi sterycznie grupami donorowymi. Jako materiały wyjściowe zastosowałem komercyjnie dostępny karbazol (17a) oraz 3,6-di-tertbutylokarbazol (17b) (otrzymany przez standardowe *tert*-butylowanie związku 17a z wydajnością 85%). Na pierwszym etapie, aminy 17a,b sprzęgano z 4-jodobenzoesanem etylu 18 w warunkach aminowania Ullmanna, otrzymując produkty 19a i 19b z wydajnością odpowiednio 80 i 95%. Na drugim etapie, w wyniku hydrolizy estrów 19a,b otrzymano kwas 4-(9H-karbazol-9-ylo)benzoesowy (20a) oraz kwas 4-(3,6-di-tert-butylo-9H-karbazol-9ylo)benzoesowy (20b) z wydajnościa prawie ilościowa (96 i 99%). Na trzecim etapie, kwasy 20a,b przekształcono w odpowiednie chlorki 21a,b przez traktowanie chlorkiem tionylu w środowisku gorącego toluenu; chlorki 21a,b wprowadzono w reakcję acylowania z 2aminotiazolem (2a) w warunkach zasadowych, otrzymując amidy 22a i 22b z bardzo dobrymi wydajnościami (79 i 77%). Wreszcie, przekształcenie tych związków w kompleksy organoboronowe **16a,b** przeprowadzono na drodze kondensacji z trifluorkiem boru w obecności DIPEA, otrzymując produkty końcowe z umiarkowanymi wydajnościami (37 i 40%).

Schemat 6. Synteza karbazolo-modyfikowanych tiazolo[3,2-*c*][1,3,5,2]oksadiazaboryn 16a,b.

W porównaniu z odpowiednimi parametrami kompleksu **4a** (Tabela 1), roztwory zmodyfikowanego karbazolem barwnika **16a** w toluenie wykazywały przesunięcie hipsochromowe w widmie absorpcji (λ_{abs} =384 nm) przy obniżonym molowym współczynniku absorpcji (ϵ =2,36·10⁴ M⁻¹·cm⁻¹) oraz przesunięcie batochromowe w widmie emisji (λ_{em} =462 nm). Wskazuje to na wzrost wewnątrzcząsteczkowego przeniesienia ładunku (*ang.*: intramolecular charge transfer, ICT) wraz ze zmianą struktury grupy donorowej Me₂N na jednostkę karbazolu. Dołączenie dwóch grup *tert*-butylowych w pozycjach C-3 i C-6 jednostki karbazolu spowodowało batochromowe przesunięcia w widmach absorpcji i emisji związku **16b** (λ_{abs} =399 nm, ϵ =2,23·10⁴ M⁻¹·cm⁻¹, λ_{em} =489 nm, w toluenie), w porównaniu z analogiem **16a**.

Obecność jednostki donorowej karbazolu, połączonej z akceptorem tiazolo[3,2-c][1,3,5,2]oksadiazaboryniny poprzez linker fenylenowy, ograniczała rotację wewnątrzcząsteczkową, powodując wzmocnienie właściwości AIE; w mieszaninach THF/woda o dużym udziale procentowym wody, wykazały one tworzenie się emisyjnych nanoagregatów o średnim rozmiarze 79 i 89 nm odpowiednio dla kompleksów **16a** i **16b**.

Wydajność kwantowa fluorescencji w stanie stałym związków **16a** i **16b** wynosiła odpowiednio 0,26 i 0,34. Ponadto, barwnik **16b** wykazywał również właściwości mechano-fluorochromowe (MFC). Krystaliczna próbka kompleksu **16b** wykazywała jasnoniebieską fluorescencję zmaksymalizowaną przy długości fali 496 nm. Natomiast po mechanicznym rozdrobnieniu próbka ta wykazywała żółtawą emisję przy 534 nm. Następnie, w wyniku oddziaływania tej samej próbki z parami dichlorometanu, nastąpiło hipsochromowe przesunięcie widma emisyjnego (λ_{em} =491 nm). Kolejne mielenie i oddziaływanie z parami dichlorometanu ujawniło cykliczne MFC zachowanie stałej próbki barwnika **16b**.

2.4. Podsumowanie

- ✓ Opracowałem nowy typ *N*,*O* π-sprzężonych kompleksów organoboronowych typu donorakceptor 4a-g zawierających tiazolowe bloki budulcowe. Większość z tych barwników tiazolo[3,2-c][1,3,5,2]oksadiazaboryninowych wykazuje bardzo wysokie wartości kwantowej wydajności fluorescencyjnej w rozcieńczonych roztworach toluenowych. Ponadto, związek z niepodstawioną jednostką tiazolową (4a), ze względu na nietypowe upakowanie molekularne i zahamowanie oddziaływań π-π/π-n, wykazuje bardzo wysoką wydajność kwantową fluorescencji (0,94) w stanie stałym oraz wykazuje efekt emisji indukowanej agregacją.
- ✓ Opracowałem prostą, wolną od metali przejściowych, syntetyczną metodę postfunkcjonalizcji barwników tiazolo[3,2-c][1,3,5,2]oksadiazaboryninowych poprzez bezpośrednie regioselektywne litowanie jednostki tiazolowej. Metoda ta pozwala na otrzymanie dużej biblioteki nowych fluorescencyjnych kompleksów organoboronowych na bazie tiazoli z różnymi podstawnikami w pozycji 5 pierścienia tiazolowego, w tym z grupami elektronodonorowymi oraz elektronoakceptorowymi. Taka postfunkcjonalizacja może być efektywnie wykorzystana do regulacji właściwości fotofizycznych takich fluoroforów difluoroboronowych.
- \checkmark Zbadałem wpływ annulacji jednostki aromatycznej do pierścienia 1,3-tiazolowego na właściwości fotofizyczne tego typu kompleksów. W tym celu opracowałam krótką syntezę benzo[4,5]tiazolo[3,2-c][1,3,5,2]oksadiazaborynin **9a-f** i **14** sprzężonych z donorem w postaci grupy 4-dimetyloaminofenylowej. Otrzymane kompleksy organoboronowe wykazywały wysokie wydajności kwantowe fluorescencji w rozpuszczalnikach niepolarnych, które malały W środowisku polarnym na skutek efektu wewnątrzcząsteczkowego przeniesienia ładunku. Ze względu na rozszerzoną zdolność wiązania wodorowego, barwnik 14 wykazywał inne upakowanie molekularne niż kompleksy 9a-f, co powodowało porównywalnie wyższą wydajność kwantową fluorescencji w stanie stałym ($\Phi_{\text{solid}} = 0,34$).
- ✓ Opracowałem skuteczną metodę postfunkcjonalizacji bromopochodnej **9f** w reakcji sprzęgania krzyżowego Suzuki-Miyaura z kwasami arylo(tienylo)boronowymi, uzyskując związki **15a-f** z różnymi podstawnikami aromatycznymi w pozycji 6 cząsteczki benzo[*d*]tiazolu, w tym z grupami elektronodonorowymi oraz elektronoakceptorowymi. Zbadano właściwości strukturalne i fotofizyczne zsyntetyzowanych pochodnych oksadiazaboryniny. Związek **15c** z podstawnikiem 4-cyjanofenylowym przy jednostce benzotiazolowej wykazuje stosunkowo wysoką wydajność kwantową fluorescencji w stanie stałym (Φ_{solid} = 0,31).
- ✓ Opracowałem wydajną syntezę nowych, wysoce stabilnych termicznie modyfikowanych karbazolem tiazolo[3,2-c][1,3,5,2]oksadiazaborynin 16a i 16b. Wbudowanie jednostki donorowej karbazolu w strukturę takich kompleksów organoboronowych prowadzi do znacznie wyższego solwatofluorochromizmu. Związki 16a i 16b wykazały wysokie wydajności kwantowe fluorescencji w stanie stałym (odpowiednio 0,26 i 0,34). Kompleks 16b z dwoma podstawnikami *tert*-butylowymi w pozycjach C-3 i C-6 cząsteczki karbazolu wykazuje zależną od morfologii fluorescencję w stanie stałym oraz znaczne właściwości mechanofluorochromowe (Δλ_{em} = 43 nm), co wynika ze zmniejszenia oddziaływań typu n-π/π-π-stacking. Oba barwniki 16a,b wykazują wzmocnienie emisji wywołane agregacją.

Dzięki tej pracy, przedstawiono nowe spojrzenie na preferowane strategie projektowania potencjalnych organoboronowych AIE aktywnych emiterów.

2.5. Bibliografia

1. Frath, D.; Massue, J.; Ulrich, G.; Ziessel, R. Angew. Chem. Int. Ed. 2014, 53, 2290-2310.

- 2. Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891-4932.
- 3. Kowada, T.; Maeda, H.; Kikuchi, K. Chem. Soc. Rev. 2015, 44, 4953-4872.

4. Bose, S.; Ngo, A. H.; Do, L. H. J. Am. Chem. Soc. 2017, 139, 8792-8795.

5. Lee, Y.-A.; Kim, J.-J.; Lee, J.; Lee, J. H. J.; Sahu, S.; Kwon, H.-Y.; Park, S.-J.; Jang, S.-Y.; Lee, J.-S.; Wang, Z.; Tam, W. L.; Lim, B.; Kang, N.-Y.; Chang, Y.-T. *Angew. Chem. Int. Ed.* **2018**, *57*, 2851-2854.

6. Bacalum, M.; Wang, L.; Boodts, S.; Yuan, P.; Leen, V.; Smisdom, N.; Fron, E.; Knippenberg, S.; Fabre, G.; Trouillas, P.; Beljonne, D.; Dehaen, W.; Boens, N.; Ameloot, M. *Langmuir* **2016**, *32*, 3495-3505.

7. Qin, W.; Dou, W.; Leen, V.; Dehaen, W.; Van der Auweraer, M.; Boens, N. *RSC Adv.* **2016**, *6*, 7806-7816.

- 8. Dou, K.; Huang, W.; Xiang, Y.; Li, S.; Liu, Z. Anal. Chem. 2020, 92, 4177-4181.
- 9. Dong, Y.; Li, X.-R.; Chen, Q.; Guo, R.-Y.; Tang, B.-X.; Kan, W.-J.; Zhang, W.; Hu, Y.; Li,
- J.; Zang, Y.; Li, X. Anal. Chem. 2020, 92, 699-706.

10. Kim, T.-I.; Hwang, B.; Lee, B.; Bae, J.; Kim, Y. J. Am. Chem. Soc. 2018, 140, 11771-11776.

11. Chen, Y.; Tsao, K.; Acton, S. L.; Keillor, J. W. Angew. Chem. Int. Ed. 2018, 57, 12390-12394.

12. Kwon, H.-Y.; Liu, X.; Choi, E. G.; Lee, J. Y.; Choi, S.-Y.; Kim, J.-Y.; Wang, L.; Park, S.-J.; Kim, B.; Lee, Y.-A.; Kim, J.-J.; Kang, N. Y.; Chang, Y.-T. *Angew. Chem. Int. Ed.* **2019**, *58*, 8426-8431.

13. Kim, B.; Fukuda, M.; Lee, J.-Y.; Su, D.; Sanu, S.; Silvin, A.; Khoo, A. T. T.; Kwon, T.; Liu, X.; Chi, W.; Liu, X.; Choi, S.; Wan, D. S. Y.; Park, S.-J.; Kim, J.-S.; Ginhoux, F.; Je, H. S.; Chang, Y.-T. *Angew. Chem. Int. Ed.* **2019**, *58*, 7972-7976.

14. Zhang, J.; Wang, N.; Ji, X.; Tao, Y.; Wang, J.; Zhao, W. Chem. Eur. J. 2020, 26, 4172-4192.

15. Güixens-Gallardo, P.; Humpolickova, J.; Miclea, S. P.; Pohl, R.; Kraus, T.; Jurkiewicz, P.; Hof, M.; Hocek, M. *Org. Biomol. Chem.* **2020**, *18*, 912-919.

16. Zou, J.; Yin, Z.; Wang, P.; Chen, D.; Shao, J.; Zhang, Q.; Sun, L.; Huang, W.; Dong, X. *Chem. Sci.* **2018**, *9*, 2188-2194.

17. Radunz, S.; Wedepohl, S.; Röhr, M.; Calderón, M.; Tschiche, H. R.; Resch-Genger, U. J. *Med. Chem.* **2020**, *63*, 1699-1708.

18. Nguyen, V.-N.; Yim, Y.; Kim, S.; Ryu, B.; Swamy, K. M. K.; Kim, G.; Kwon, N.; Kim, C.-Y.; Park, S.; Yoon, J. *Angew. Chem. Int. Ed.* **2020**, *59*, 8957-8962.

19. Qi, S.; Kwon, N.; Yim, Y.; Nguyen, V.-N.; Yoon, J. Chem. Sci. 2020, 11, 6479-6484.

20. Bessette, A.; Hanan, G. S. Chem. Soc. Rev. 2014, 43, 3342-3405.

21. Li, T.; Meyer, T.; Ma, Z.; Benduhn, J.; Körner, C.; Zeika, O.; Vandewal, K.; Leo, K. J. Am. Chem. Soc. **2017**, *139*, 13636-13639.

22. Sharma, G. D.; Siddiqui, S. A.; Nikiforou, A.; Zervaki, G. E.; Georgakaki, I.; Ladomenou, K.; Coutsolelos, A. G. J. Mater. Chem. C **2015**, *3*, 6209-6217.

23. Gkini, K.; Verykios, A.; Balis, N.; Kaltzoglou, A.; Papadakis, M.; Adamis, K. S.; Armadorou, K.-K.; Soultati, A.; Drivas, C.; Gardelis, S.; Petsalakis, I. D.; Palilis, L. C.; Fakharuddin, A.; Haider, M. I.; Bao, X.; Kennou, S.; Argitis, P.; Schmidt-Mende, L.; Coutsolelos, A. G.; Falaras, P.; Vasilopoulou, M. *ACS Appl. Mater. Interfaces* **2020**, *12*, 1120-1131.

24. Soultati, A.; Verykios, A.; Panagiotakis, S.; Armadorou, K.-K.; Haider, M. I.; Kaltzoglou, A.; Drivas, C.; Fakharuddin, A.; Bao, X.; Yang, C.; bin Mohd Yusoff, A. R.; Evangelou, E. K.; Petsalakis, I.; Kennou, S.; Falaras, P.; Yannakopoulou, K.; Pistolis, G.; Argitis, P.; Vasilopoulou, M. *ACS Appl. Mater. Interfaces* **2020**, *12*, 21961-21973.

25. Pochorovski, I.; Knehans, T.; Nettels, D.; Müller, A. M.; Schweizer, W. B.; Caflisch, A.; Schuler, B.; Diederich, F. J. Am. Chem. Soc. **2014**, *136*, 2441-2449.

26. Otto, J. P.; Wang, L.; Pochorovski, I.; Blau, S. M.; Aspuru-Guzik, A.; Bao, Z.; Engel, G. S.; Chiu, M. *Chem. Sci.* **2018**, *9*, 3694-3703.

27. Zhou, J.; Zhang, Y.; Yu, G.; Crawley, M. R.; Fulong, C. R. P.; Friedman, A. E.; Sengupta, S.; Sun, J.; Li, Q.; Huang, F.; Cook, T. R. *J. Am. Chem. Soc.* **2018**, *140*, 7730-7736.

28. Yesilgul, N.; Seven, O.; Guliyev, R.; Akkaya, E. U. J. Org. Chem. 2018, 83, 13228-13232.

29. Käseborn, M.; Holstein, J. J.; Clever, G. H.; Lützen, A. Angew. Chem. Int. Ed. 2018, 57, 12171-12175.

30. Cantu, R.; Seetharaman, S.; Babin, E. M.; Karr, P. A.; D'Souza, F. J. Phys. Chem. A 2018, 122, 3780-3786.

31. Helmers, I.; Shen, B.; Kartha, K. K.; Albuquerque, R. Q.; Lee, M.; Fernández, G. Angew. Chem. Int. Ed. 2020, 59, 5675-5682.

32. Li, D.; Zhang, H.; Wang, Y. Chem. Soc. Rev. 2013, 42, 8416-8433.

33. Li, P.; Chan, H.; Lai, S.-L.; Ng, M.; Chan, M.-Y.; Yam, V. W.-W. Angew. Chem. Int. Ed. **2019**, *58*, 9088-9094.

34. Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. Chem. Soc. Rev. 2015, 44, 8904-8939.

35. Yang, C.; Wang, X.; Wang, M.; Xu, K.; Xu, C. Chem. Eur. J. 2017, 23, 4310-4313.

36. Golden, J. H.; Facendola, J. W.; Sylvinson M. R., D.; Baez, C. Q.; Djurovich, P. I.; Thompson, M. E. J. Org. Chem. **2017**, 82, 7215-7222

37. Golden, J. H.; Estergreen, L.; Porter, T.; Tadle, A. C.; Sylvinson, M. R. D.; Facendola, J. W.; Kubiak, C. P.; Bradforth, S. E.; Thompson, M. E. *ACS Appl. Energy Mater.* **2018**, *1*, 1083-1095.

38. Liu, K.; Lalancette, R. A.; Jäkle, F. J. Am. Chem. Soc. 2017, 139, 18170-18173.

39. Marks, T.; Daltrozzo, E.; Zumbusch, A. Chem. Eur. J. 2014, 20, 6494-6504.

40. Quan, L.; Chen, Y.; Lv, X.-J.; Fu, W.-F. Chem. Eur. J. 2012, 18, 14599-14604.

41. Gao, N.; Cheng, C.; Yu, C.; Hao, E.; Wang, S.; Wang, J.; Wei, Y.; Mu, X.; Jiao, L. *Dalton Trans.* **2014**, *43*, 7121-7127.

42. Liu, H.; Lu, H.; Xu, J.; Liu, Z.; Li, Z.; Mack, J.; Shen, Z. Chem. Commun. **2014**, *50*, 1074-1076.

43. Wu, Y.; Lu, H.; Wang, S.; Lia, Z.; Shen, Z. J. Mater. Chem. C 2015, 3, 12281-12289.

44. Bukowska, P.; Piechowska, J.; Loska, R. Dyes Pigm. 2017, 137, 312-321.

45. Galer, P.; Korošec, R. C.; Vidmar, M.; Šket, B. J. Am. Chem. Soc. 2014, 136, 7383-7394.

46. Cheng, X.; Li, D.; Zhang, Z.; Zhang, H.; Wang, Y. Org. Lett. 2014, 16, 880-883.

47. Collot, M.; Fam, T. K.; Ashokkumar, P.; Faklaris, O.; Galli, T.; Danglot, L.; Klymchenko, A. S. *J. Am. Chem. Soc.* **2018**, *140*, 5401-5411.

- 48. Bellinger, S.; Hatamimoslehabadi, M.; Bag, S.; Mithila, F.; La, J.; Frenette, M.; Laoui, S.; Szalda, D. J.; Yelleswarapu, C.; Rochford, J. *Chem. Eur. J.* **2018**, *24*, 906-917.
- 49. Liu, T.; Zhang, G.; Evans, R. E.; Trindle, C. O.; Altun, Z.; DeRosa, C. A.; Wang, F.; Zhuang, M.; Fraser, C. L. *Chem. Eur. J.* **2018**, *24*, 1859-1869.
- 50. Kubota, Y.; Tanaka, S.; Funabiki, K.; Matsui, M. Org. Lett. 2012, 14, 4682-4685.
- 51. Kubota, Y.; Ozaki, Y.; Funabiki, K.; Matsui, J. Org. Chem. 2013, 78, 7058-7067.
- 52. Ośmiałowski, B.; Zakrzewska, A.; Jędrzejewska, B.; Grabarz, A.; Zaleśny, R.; Bartkowiak,
- W.; Kolehmainen, E. J. Org. Chem. 2015, 80, 2072-2080.
- 53. Grabarz, A. M.; Jędrzejewska, B.; Zakrzewska, A.; Zaleśny, R.; Laurent, A. D.; Jacquemin,
- D.; Ośmiałowski, B. J. Org. Chem. 2017, 82, 1529-1537.
- 54. Du, M.-L.; Hu, C.-Y.; Wang, L.-F.; Li, C.; Han, Y.-Y.; Gan, X.; Chen, Y.; Mu, W.-H.; Huang, M. L.; Fu, W.-F. *Dalton Trans.* **2014**, *43*, 13924-13931.
- 55. Kwak, M. J.; Kim, Y. Bull. Korean Chem. Soc. 2009, 30, 2865-2866.
- 56. Zhou, Y.; Kim, J. W.; Nandhakumar, R.; Kim, M. J.; Cho, E.; Kim, Y. S.; Jang, Y. H.; Lee, C.; Han, S.; Kim, K. M.; Kim, J.-J.; Yoon, J. *Chem. Commun.* **2010**, *46*, 6512-6514.
- 57. Santra, M.; Moon, H.; Park, M.-H.; Lee, T.-W.; Kim, Y. K.; Ahn, K. H. *Chem. Eur. J.* **2012**, *18*, 9886-9893.
- 58. Massue, J.; Frath, D.; Retailleau, P.; Ulrich, G.; Ziessel, R. Chem. Eur. J. 2013, 19, 5375-5386.
- 59. Massue, J.; Frath, D.; Ulrich, G.; Retailleau, P.; Ziessel, R. Org. Lett. 2012, 14, 230-233.
- 60. Frath, D.; Azizi, S.; Ulrich, G.; Ziessel, R. Org. Lett. 2012, 14, 4774-4777.
- 61. Yu, Z.; Wu, Y.; Xiao, L.; Chen, J.; Liao, Q.; Yao, J.; Fu, H. J. Am. Chem. Soc. **2017**, 139, 6376-6381.
- 62. Zhang, P.; Liu, W.; Niu, G.; Xiao, H.; Wang, M.; Ge, J.; Wu, J.; Zhang, H.; Li, Y.; Wang, P. J. Org. Chem. 2017, 82, 3456-3462.
- 63. Grabarz, A. M.; Laurent, A. D.; Jędrzejewska, B.; Zakrzewska, A.; Jacquemin, D.; Ośmiałowski, B. J. Org. Chem. 2016, 81, 2280-2292.
- 64. Bonacorso, H. G.; Calheiro, T. P.; Iglesias, B. A.; Acunha, T. V.; Franceschini, S. Z.; Ketzer, A.; Meyer, A. R.; Rodrigues, L. V.; Nogara, P. A.; Rocha, J. B. T.; Zanatta, N.; Martins, M. A. P. *New J. Chem.* **2018**, *42*, 1913-1920.
- 65. Glotzbach, C.; Kauscher, U.; Voskuhl, J.; Kehr, N. S.; Stuart, M. C. A.; Fröhlich, R.; Galla, H. J.; Ravoo, B. J.; Nagura, K.; Saito, S.; Yamaguchi, S.; Würthwein, E.-U. *J. Org. Chem.* **2013**, 78, 4410-4418.
- 66. Yamaji, M.; Kato, S.; Tomonari, K.; Mamiya, M.; Goto, K.; Okamoto, H.; Nakamura, Y.; Tani, F. *Inorg. Chem.* **2017**, *56*, 12514-12519.
- 67. Hachiya, S.; Inagaki, T.; Hashizume, D.; Maki, S.; Niwa, H.; Hirano, T. *Tetrahedron Lett.* **2010**, *51*, 1613-1615.
- 68. Hachiya, S.; Hashizume, D.; Ikeda, H.; Yamaji, M.; Maki, S.; Niwa, H.; Hirano, T. J. *Photochem. Photobiol. A: Chem.* **2016**, *331*, 206-214.
- 69. Bonacorso, H. G.; Calheiro, T. P.; Acunha, T. V.; Iglesias, B. A.; Franceschini, S. Z.; Ketzer, A.; Meyer, A. R.; Nogara, P. A.; Rocha, J. B.T.; Zanatta, N.; Martins, M. A. P. *Dyes and Pigments* **2019**, *161*, 396-402.
- 70. Wu, Y.-Y.; Chen, Y.; Gou, G.-Z.; Mu, W.-H.; Lv, X.-J.; Du, M.-L.; Fu, W.-F. Org. Lett. **2012**, *14*, 5226-5229.
- 71. Bonacorso, H. G.; Calheiro, T. P.; Iglesias, B. A.; da Silveira, C. H.; da Silva, E. N. J.; Ketzer, A.; Bublitz, F.; Zanatta, N.; Martins, M. A. P. *J. Fluorine Chem.* **2018**, *205*, 8-14.

72. Bonacorso, H. G.; Calheiro, T. P.; Iglesias, B. A.; Berni, I. R. C.; da Silva Júnior, E. N.; Rocha, J. B. T.; Zanatta, N.; Martins, M. A. P. *Tetrahedron Lett.* **2016**, *57*, 5017-5021.

73. Dipold, J.; Romero, E. E.; Donnelly, J.; Calheiro, T. P.; Bonacorso, H. G.; Iglesias, B. A.; Siqueira, J. P.; Hernandez, F. E.; De Boni, L.; Mendonca, C. R. *Phys. Chem. Chem. Phys.* **2019**, *21*, 6662-6671.

74. Wu, Y.-Y.; Chen, Y.; Mu, W.-H.; Lv, X.-J.; Fu, W.-F. J. Photochem. Photobiol. A: Chem. **2013**, 272, 73-79.

75. Wu, G. F.; Xu, Q. L.; Guo, L. E.; Zang, T. N.; Tan, R.; Tao, S. T.; Ji, J. F.; Hao, R. T.; Zhang, J. F.; Zhou, Y. *Tetrahedron Lett.* **2015**, *56*, 5034-5038.

76. Zhang, K.; Zheng, H.; Hua, C.; Xin, M.; Gao, J.; Li, Y. *Tetrahedron* **2018**, *74*, 4161-4167. 77. Wu, Y.-J. *Top. Heterocycl. Chem.* **2012**, *29*, 307-327.

78. Stanetty, P.; Schnürch, M.; Mereiter, K.; Mihovilovic, M. D. J. Org. Chem. 2005, 70, 567-574.

79. Stanetty, P.; Holzweber, M.; Schnürch, M. Synlett 2007, 2007, 3016-3018.

80. Schnürch, M.; Khan, A. F.; Mihovilovic, M. D.; Stanetty, P. Eur. J. Org. Chem. 2009, 2009, 3228-3236.

81. Havel, S.; Khirsariya, P.; Akavaram, N.; Paruch, K.; Carbain, B. J. Org. Chem. 2018, 83, 15380-15405.

82. Hand, E. S.; Baker, D. C. Synthesis 1989, 1989, 905-908.

83. Katritzky, A. R.; Akue-Gedu, R.; Vakulenko, A. V. Arkivoc 2007, 2007, 5-12.

84. Katritzky, A. R.; Abdel-Fattah, A. A. A.; Vakulenko, A. V.; Tao, H. J. Org. Chem. 2005, 70, 9191-9197.

85. Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J.-C.; Boireau, A.; Bour, Y.; Coléno, M.-

A.; Doble, A.; Doerflinger, G.; Huu, C. D.; Donat, M.-H.; Duchesne, J. M.; Ganil, P.; Guérémy, C.; Honoré, E.; Just, B.; Kerphirique, R.; Gontier, S.; Hubert, P.; Laduron, P. M.; Blevec, J. L.; Meunier, M.; Miquet, J.-M.; Nemecek, C.; Pasquet, M.; Piot, O.; Pratt, J.; Rataud, J.; Reibaud, M.; Stutzmann, J.-M.; Mignani, S. *J. Med. Chem.* **1999**, *42*, 2828-2843.

86. Dadmal, T. L.; Katre, S. D.; Mandewale, M. C.; Kumbhare, R. M. *New J. Chem.* **2018**, *42*, 776-797.

3. WYKAZ POZOSTALYCH PUBLIKACJI

3.1. Prace opublikowane przed uzyskaniem stopnia doktora

1. V. S. Matiichuk, **M. A. Potopnyk**, N. D. Obushak, Molecular design of pyrazolo[3,4-d]pyridazines, *Russ. J. Org. Chem.* **2008**, 44 (9), 1352–1361. (IF₂₀₀₈ = 0.557)

Opracowałem metodę syntezy pyrazolo[3,4-d]pirydanyn i określiłem ich strukturę; brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 45%.

2. V. S. Matiichuk, **M. A. Potopnyk**, N. D. Obushak, Synthesis and reactions of 3-(3-ethoxycarbonyl-1-phenyl-1*H*-pyrazol-4-yl)propenic acid, *Russ. J. Org. Chem.* **2009**, *45* (5), 712–718. (IF₂₀₀₉ = 0.525)

Opracowałem metodę syntezy kwasu 3-(3-etoksykarbonylo-1-fenylo-1H-pirazol-4ylo)propenowego i zbadałem jego właściwości chemiczne; brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 45%. 3. V. S. Matiichuk, **M. A. Potopnyk**, N. D. Obushak, Synthesis of 2-aryl-4-(*R*-sulfanylmethyl)-3-methyl-6,7-dihydro-2*H*-pyrazolo[3,4-*d*]pyridazin-7-ones, *Russ. J. Org. Chem.* **2010**, *46* (*10*), 1550–1557. (IF₂₀₁₀ = 0.635)

Opracowałem metodę syntezy 2-arylo-4-(*R*-sulfanylometylo)-3-metylo-6,7-dihydro-2*H*-pirazolo[3,4-d]pirydazyn-7-onów i określiłem ich strukturę; brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 45%.

4. **M. A. Potopnyk**, P. Cmoch, M. Cieplak, A. Gajewska, S. Jarosz, The synthesis of higher carbon sugars: a study on the rearrangement of higher sugar allylic alcohols, *Tetrahedron: Asymmetry* **2011**, *22*(7), 780–786. (IF₂₀₁₁ = 2.652)

Opracowałem metodę syntezy nowych pochodnych wyższych cukrów węglowych; brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 55%.

5. V. S. Matiychuk, **M. A. Potopnyk**, R. Luboradzki, M. D. Obushak, A new method for the synthesis of 1-aryl-1,2,4-triazole derivatives, *Synthesis* **2011**, *11*, 1799–1803. (IF₂₀₁₁ = 2.466)

Opracowałem metodę syntezy pochodnych 1-arylo-1,2,4-triazolu i określiłem ich strukturę oraz brałem udział w pisaniu manuskryptu. Mój wkład szacuję na 40%.

6. S. B. Meshkova, V. S. Matiichuk, **M. A. Potopnyk**, Z. M. Topilova, V. P. Gorodnyuk, K. N. Olenich, I. V. Bol'bot, IR luminescence of Neodymium(III) and Ytterbium(III) complexes with acylpyrazolones in solutions, *Russ. J. Inorg. Chem.* **2011**, *56*(6), 899–905. (IF₂₀₁₁ = 0.415)

Opracowałem metodę syntezy ligandów acylopirazolonowych i określiłem ich strukturę; brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 20%.

7. M. A. Potopnyk, P. Cmoch, S. Jarosz, Short synthesis of diamide-linked sucrose macrocycles, *Org. Lett.* **2012**, 14(16), 4258–4261. (IF₂₀₁₂ = 6.142)

Opracowałem metodę syntezy nowych makrocykli sacharozy z wiązaniami diamidowymi oraz określiłem ich strukturę; brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 70%.

8. **M. A. Potopnyk**, B. Lewandowski, S. Jarosz, Novel sucrose-based macrocyclic receptors for enantioselective recognition of chiral ammonium cations, *Tetrahedron: Asymmetry* **2012**, 23(20-21), 1474–1479. (IF₂₀₁₂ = 2.115)

Opracowałam metodę syntezy nowych makrocyklicznych receptorów na bazie sacharozy, określiłem ich strukturę i zbadałam zastosowanie do enancjoselektywnego rozpoznawania chiralnych kationów amoniowych. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 75%.

9. M. A. Potopnyk, S. Jarosz, An efficient synthesis of novel sucrose-containing dilactams, *Monatsh. Chem.* **2013**, *144*, 437–443. (IF₂₀₁₃ = 1.347)

Opracowałam metodę syntezy nowych dilaktamów zawierających sacharozę i określiłem ich strukturę. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 75%.

10. V. S. Matiychuk, **M. A. Potopnyk**, M. D. Obushak, Simple and efficient synthesis of ethyl 1-aryl-4-formyl-1*H*-pyrazole-3-carboxylates, *J. Het. Chem.* **2013**, 50(S1), E43–E47. (IF₂₀₁₃ = 0.873)

Opracowałem metodę syntezy 1-arylo-4-formylo-1H-pirazolo-3-karboksylanów etylu i określiłem ich strukturę. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 40%.

3.2. Prace opublikowane po uzyskaniu stopnia doktora

1. M. A. Potopnyk, S. Jarosz, Synthesis and complexing properties of 'unsymmetrical' sucrose-based receptors, *Eur. J. Org. Chem.* **2013**, *23*, 5117–5126. (IF₂₀₁₃ = 3.154)

Opracowałem metodę syntezy nowych "niesymetrycznych" związków makrocyklicznych na bazie sacharozy, określiłem ich strukturę i zbadałem właściwości kompleksujące. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 80%.

2. M. A. Potopnyk, S. Jarosz, Nitrogen-containing macrocycles having a carbohydrate scaffold, *Advances in Carbohydrate Chemistry and Biochemistry*, **2014**, *71*, 227–295. (IF₂₀₁₄ = 2.100)

Mój wkład w powstanie tej publikacji polegał na dogłębnej analizie danych literaturowych i napisaniu publikacji. Mój wkład szacuję na 85%.

3. G. Witkowski, M. Kowalski, Ł. Szyszka, **M. A. Potopnyk**, S. Jarosz, Synthesis of 5-epideoxynojirimycin from methyl α -D-glucoside, *Tetrahedron: Asymmetry* **2016**, *27*, 747–752. (IF₂₀₁₆ = 2.126)

Mój wkład w powstanie tej publikacji polegał na analizie danych NMR. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 10%.

4. **M. A. Potopnyk**, V. S. Matiichuk, M. D. Obushak, Synthesis and properties of ethyl 1-aryl-5-methyl-4-[1-(phenylhydrazinylidene)ethyl]-1*H*-pyrazole-3-carboxylates, *Russ. J. Org. Chem.* **2017**, *53*, 62–65. (IF₂₀₁₇ = 0.655)

Mój wkład w powstanie tej publikacji polegał na syntezie niektórych związków. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 35%.

5. Ł. Szyszka, A. Osuch-Kwiatkowska, **M. A. Potopnyk**, S. Jarosz, An efficient synthesis of a C12-higher sugar aminoalditol, *Beilstein J. Org. Chem.* **2017**, *13*, 2146–2152. (IF₂₀₁₇ = 2.330)

Mój wkład w powstanie tej publikacji polegał na analizie danych NMR. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 15%.

6. M. Malik, P. Cmoch, **M. A. Potopnyk**, S. Jarosz, Synthesis of polyhydroxylated bicyclic tetrahydrofurans and tetrahydropyrans *via* a stereoselective domino cyclization/reduction reaction, *Tetrahedron: Asymmetry* **2017**, *28*, 1750–1755. (IF₂₀₁₆ = 2.126)

Mój wkład w powstanie tej publikacji polegał na analizie danych NMR. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 15%.

7. K. Tiara, M. A. Potopnyk, S. Jarosz, Synthesis of a sucrose-based macrocycle with unsymmetrical monosaccharides "arms", *Beilstein J. Org. Chem.* **2018**, *14*, 634–641. (IF₂₀₁₈ = 2.595)

Mój wkład w powstanie tej publikacji polegał na analizie danych eksperymentalnych i analitycznych. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 30%.

8. S. Jarosz, K. Tiara, **M. A. Potopnyk**, Stereoselective synthesis of sugar mimetics from simple monosaccharides, *Pure Appl. Chem.* **2019**, *91* (7), 1137–1148. (IF₂₀₁₈ = 2.350)

Mój wkład w powstanie tej publikacji polegał na dogłębnej analizie danych literaturowych. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 20%.

9. Ł. Szyszka, P. Cmoch, A. Butkiewicz, **M. A. Potopnyk**, S. Jarosz, Synthesis of Cyclotriveratrylene-Sucrose-Based Capsules, *Org. Lett.* **2019**, *21*, 6523–6528. (IF₂₀₁₉ = 6.091)

Mój wkład w powstanie tej publikacji polegał na analizie danych eksperymentalnych. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 15%.

10. K. Tiara, **M. A. Potopnyk**, P. Świder, S. Jarosz, Stereocontrolled Debenzylative Cycloetherification Reaction as a Route to Enantiopure *C*-Furanosides with Amino Substituents in the Side Chain, *J. Org. Chem.* **2020**, *85*, 3517–3526. (IF₂₀₁₉ = 4.335)

Mój wkład w powstanie tej publikacji polegał na analizie danych eksperymentalnych. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 30%.

11. G. Witkowski, **M. A. Potopnyk**, K. Tiara, A. Osuch-Kwiatkowska, S. Jarosz, Synthesis of highly oxygenated bicyclic carbasugars. Remarkable difference in the reactivity of the D-*gluco* and D-*xylo*-derived trienes. *Molecules* **2020**, *25*, 3357. (IF₂₀₁₉ = 3.267)

Mój wkład w powstanie tej publikacji polegał na analizie danych NMR. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 20%.

12. H. Huang, C. A. Howard, S. Zari, H. J. Cho, S. Shukla, H. Li, J. Ndoj, P. González-Alonso, C. Nikolaidis, J. Abbott, D. S. Rogawski, **M. A. Potopnyk**, K. Kempinska, H. Miao, T. Purohit, A. Henderson, A. Mapp, M. L. Sulis, A. Ferrando, J. Grembecka, T. Cierpicki, Covalent inhibition of NSD1 histone methyltransferase. *Nat. Chem. Biol.* **2020**, *16*, 1403–1410. (IF₂₀₁₉ = 12.587)

Opracowałem metodę syntezy inhibitorów NSD1 i określiłem ich strukturę. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 15%.

13. Ł. Szyszka, P. Cmoch, M. Górecki, M. Ceborska, **M. A. Potopnyk**, S. Jarosz, "Chiral Molecular Cages Based on Cyclotriveratrylene and Sucrose Units Connected with *p*-Phenylene Linkers" *Eur. J. Org. Chem.* **2021**, 897–906. (IF₂₀₁₉ = 2.889)

Mój wkład w powstanie tej publikacji polegał na analizie danych eksperymentalnych. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 15%.

3.3. Rozdziały książek

1. S. Jarosz, M. Nowogródzki, M. Magdycz, **M. A. Potopnyk** "Carbobicyclic sugar mimics" *Carbohydrate chemistry. Chemical and biological approaches*, The Chemical Society/The Royal Society of Chemistry (UK), **2012**, Vol. *37*, 303–325.

Mój wkład w powstanie tej publikacji polegał na dogłębnej analizie danych literaturowych. Brałem również udział w pisaniu manuskryptu. Mój wkład szacuję na 15%.

2. **M. A. Potopnyk**, S. Jarosz "Sweet" sucrose macrocycles via a "click chemistry" //Click Chemistry in Glycoscience: New Developments and Strategies (Ed. Zbigniew J. Witczak, Roman Bielski), Wiley, 2013, P. 235–250.

Mój wkład w powstanie tej publikacji polegał na dogłębnej analizie danych literaturowych i napisaniu publikacji. Mój wkład szacuję na 50%.

3. S. Jarosz, **M. A. Potopnyk**, M. Kowalski "Sucrose as chiral platform in the synthesis of macrocyclic receptors" *Carbohydrate chemistry*. *Chemical and biological approaches*, The Chemical Society/The Royal Society of Chemistry (UK), **2014**, *40*, 236–256.

Mój wkład w powstanie tej publikacji polegał na dogłębnej analizie danych literaturowych i napisaniu publikacji. Mój wkład szacuję na 25%.

4. H. Wächtler, D. P. Fuentes, O. Apelt, C. Vogel, D. Michalik, **M. A. Potopnyk** "Improved Synthesis of 3-(2-Deoxy- β -D-erythro-pentofuranos-1-yl) prop-1-ene" Carbohydrate Chemistry. Proven Synthetic Methods. CRC Press. Taylor and Francis Group, **2018**, *Vol. 4*, 271–282.

Mój wkład w powstanie tej publikacji polegał na powtórnej syntezie 3-(2-deoksy-β-D-erytro-pentofuranos-1-ylo) prop-1-enu. Mój wkład w powstanie publikacji szacuję na 10%.

5. H. Wächtler, D. P. Fuentes, O. Apelt, C. Vogel, D. Michalik, **M. A. Potopnyk** "Improved Synthesis of 3-(β -D-Ribofuranos-1-yl) prop-1-ene" Carbohydrate Chemistry. Proven Synthetic Methods. CRC Press. Taylor and Francis Group, **2018**, *Vol. 4*, 283–295.

Mój wkład w powstanie tej publikacji polegał na powtórnej syntezie $3-(\beta-D-rybofuranos-1-ylo)$ prop-1-enu. Mój wkład w powstanie publikacji szacuję na 10%.

4. PATENTY

T. Cierpicki, J. Grembecka, H. Huang, H. J. Cho, **M. Potopnyk**, S. Dudkin, W. Chen, Y. Adam, C. Howard, E. G. Kim "NSD Family Inhibitors and Methods of Treatment Therewith" WO/2019/113469.

5. WYSTĄPIENIA KONFERENCYJNE

- M. Potopnyk, V. Matiychuk, M. Obushak, V. Turycia "Synthesis of annulated pyrazole derivatives", 11th Scientific Conference "Lviv Chemical Readings-2007", Lwów, Ukraina, 30.05-1.06.2007. Plakat.
- 2. M. A. Potopnyk, V. S. Matiychuk "Design of 1-arylpyrazoles", 10th Conference of young scientists and students chemists Southern Ukraine, Odessa, Ukraina, 16-17.10.2007. Komunikat ustny.
- M. Potopnyk, N. Bodnar, V. Matiychuk, M. Obushak "Synthesis of pyrazolo[3,4-d]pyridazines", 12th Scientific Conference "Lviv Chemical Readings-2009", Lwów, Ukraina, 1-5.06.2009. Komunikat ustny.
- M. A. Potopnyk, S. Jarosz, M. Cieplak, A. Gajewska "Rearrangement of higher sugar allylic alcohols", 22th Conference on Advances In Organic Synthesis, Karpacz, Polska, 8-12.07.2009. Plakat.
- M. A. Potopnyk, S. Jarosz, M. Cieplak, A. Gajewska "Rearrangement of higher sugar allylic alcohols", 52th Polish Chemical Society and Polish Association of Chemical Engineers Congress, Łódź, Polska, 12-16.09. 2009. Plakat.
- 6. **M. A. Potopnyk**, B. Lewandowski, S. Jarosz "New sucrose macrocycle", 18th International Conference on Organic Synthesis, Bergen, Norwegia, 1-6.08.2010. **Plakat**.
- 7. M. A. Potopnyk, B. Lewandowski, S. Jarosz "Synthesis of new sucrose macrocycle", 3rd EuCheMS Chemistry Congress, Norymberga, Niemcy, 29.08-2.09.2010. Plakat.
- P. Cmoch, M. A. Potopnyk, W. Schilf, M. Cieplak, A. Gajewska, S. Jarosz "Study of products of sugar allylic alcohols rearrangement by nuclear magnetic resonance (NMR)", 9th Polish Symposium on the Organic Chemistry, Warsawa, Polska, 6-9.04.2011. Plakat.
- 9. **M. A. Potopnyk**, S. Jarosz "New macrocyclic sucrose derivatives", 9th Polish Symposium on the Organic Chemistry, Warsawa, Polska, 6-9.04.2011. **Plakat**.
- 10.**M. A. Potopnyk**, S. Jarosz "New aza crown ethers with sucrose scaffold", 12th Tetrahedron symposium, Sitges, Hiszpania, 21-24.06.2011. **Plakat**.
- 11.**M. A. Potopnyk**, S. Jarosz "Synthesis of new aza crown ethers with sucrose scaffold", 17th European Symposium on Organic Chemistry, Creta, Grecja, 10-15.07.2011. **Plakat**.
- 12.M. A. Potopnyk, S. Jarosz "Synthesis macrocyclic dilactams containing the sucrose subunit and isophtalic or 2,6-pyridinedicarbonate amides", 13th Tatrahedron symposium, Amsterdam, Holandia, 26-29.06.2012. Plakat.
- 13.**M. A. Potopnyk** "Fluorescent 1,3-thiazole containing "push-pull" BF₂ complexes", The Polish-German Conference on organic chemistry, Warsawa, Polska, 9-14.10.2016. **Komunikat ustny**.
- 14.**M. A. Potopnyk** "Fluorescent 1,3-thiazole-containing $N,O \pi$ -conjugated boron complexes", 11th Polish Symposium on the Organic Chemistry, Warsawa, Polska, 8-11.04.18. Komunikat ustny.
- 15.**M. A. Potopnyk**, "*N*,*O* π-Conjugated (Benzo/Naphtho)Thiazole BF₂ Complexes", German-Polish-Baltic Conference on Organic Chemistry, Hamburg, Niemcy, 15-19.05.18. Komunikat ustny.

- 16.**M. A. Potopnyk**, "*N*,*O* π-Conjugated (Benzo/Naphtho)Thiazole BF₂ Complexes", Polish Photoscience Seminar 2018, Kurtyń, Polsla, 11-14.06.18. Komunikat ustny.
- 17.M. A. Potopnyk, D. Volyniuk, R. Luboradzki, M. Ceborska, I. Hladka, Y. Danyliv, J. V. Gražulevičius "Thiazolo[3,2-c][1,3,5,2]oxadiazaborinine Fluorescent Dyes" 24th International Krutyń Summer School 2019, Krutyń, Polska, 1-7.09.2019. Plakat.

6. WYKŁADY NA ZAPROSZENIE

1. **Potopnyk, M.** "*Molecular design of thiazolo*[3,2-*c*][1,3,5,2]*oxadiazaborinine fluorescent dyes*", Kaunas Technology University, Kaunas, Litwa, 6.12.2019.

2. **Potopnyk, M.** "Molecular design of (benzo)thiazolo[3,2-c][1,3,5,2]oxadiazaborinine fluorescent dyes", Instytut Chemii Fizycznej, Polska Akademia Nauk, Warsawa, Polska, 28.10.2020.

7. PROJEKTY BADAWCZE

1. Grant Unii Europejskiej w ramach Europejskiego Funduszu Rozwoju Regionalnego. "*Sugars as raw materials in the synthesis of products with high added value*" (POIG.01.01.02-14-102/09), Institut Chemii Organicznej PAN, Warszawa, Polska, 2010-2013, **wykonawca**.

2. Grant Stowarzyszenia Pomocy Chorym na Białaczkę i Chłoniaki (USA). "*Targeting NSD1 histone methyltransferase in pediatric leukemia*" (TRP grant 6111-14), Uniwersytet Michigan, Ann Arbor, Michigan, USA; 2013-2014, **wykonawca**.

3. Grant Francuskiej Narodowej Agencji Badawczej. "Single synthetic cell microreactor for the fundamental understanding of NOs enzymatic activity and its implication in system biology" (ANR-14-CE16-0015), Uniwersytet Bordeaux, Francja, 2015-2016, **wykonawca**.

4. Grant Narodowego Centrum Nauki (Polska). "Synthesis and properties of macrocyclic compounds with sucrose scaffold" (UMO-2012/05/B/ST5/00377), Institut Chemii Organicznej PAN, Warszawa, Polska, 2016-2017, **wykonawca**.

5. Grant Narodowego Centrum Nauki (Polska). "*Synthesis and properties of cryptands with sucrose scaffold*" (UMO-2016/21/B/ST5/03382), Institut Chemii Organicznej PAN, Warszawa, Polska, 2017-2019, **wykonawca**.

6. Grant Narodowego Centrum Nauki (Polska). "*N,O*-chelatowane tiazolowe kompeksy boru dla zastosowań optoelektronicznych" (UMO-2019/03/X/ST4/00037), Institut Chemii Organicznej PAN, Warszawa, Polska, 2019-2020, **kierownik projektu**.

8. DZIAŁALNOŚC EWALUACYJNA

Recenzent American Chemical Society, Royal Society of Chemistry, Wiley.

9. OSIĄGNIECIA DYDAKTYCZNE

Promotor pomocniczy prac doktorskich:

a) Łukasz Szyszka, w trakcie realizacji;

b) Karolina Tiara, *w trakcie realizacji*.

Opiekun nad studentami odbywającymi staże w Instytucie Chemii Organicznej PAN.

Opiekun nad młodzieżą uzdolnioną w ramach warsztatów organizowanych przez Krajowy Fundusz na rzecz Dzieci w Instytucie Chemii Organicznej PAN.

10. NAGRODY I WYRÓŻNIENIA

Nagroda w konkursie "Młodzi naukowcy Instytutu Chemii Organicznej PAN" 2019.

Nagroda w konkursie "Młodzi naukowcy Instytutu Chemii Organicznej PAN" 2018.

Pierwsza nagroda na Ogólnoukraińskim Konkursie Prac Naukowych Studentów, Dniepropietrowsk, Ukraina, 2008.

Dyplom magisterski z wyróżnieniem 2008.

I nagroda na X Konferencji Młodych Naukowców i Studentów Chemików Południowej Ukrainy, Odessa, Ukraina, 2007.

Dyplom licencjata z wyróżnieniem 2007.

11. PODSUMOWANIE DOROBKU NAUKOWEGO

Liczba publikacji: **34** w tym: -jako pierwszy autor: **14** -jako autor korespondencyjny: **9** Sumaryczny IF¹: **95,193** Liczba cytowań: **220**²/**240**³ Indeks Hirscha: **9**²/**10**³

Tomonuck

¹ Dane wg *Journal Citation Reports* (z dn. 9.04.2021)

² Dane wg Web of Science (z dn. 9.04.2021)

³ Dane wg *Scopus* (z dn. 9.04.2021)